高一数学集合的练习题
在各个领域,我们都要用到练习题,做习题在我们的学习中占有非常重要的位置,对掌握知识、培养能力和检验学习的效果都是非常必要的,你知道什么样的习题才是好习题吗?下面是小编为大家整理的高一数学集合的练习题,供大家参考借鉴,希望可以帮助到有需要的朋友。
高一数学集合的练习题1
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)已知集合 , ,则下列关系式中正确的是( ).
A.mM B.{m}M C.{m}M D.
(2)设全集U={0,1,2,3,4},集合A={0,1,2,3},B={2,3,4},则 等于( ).
A.{0} B.{0,1} C.{0,1,4} D.{0,1,2,3,4}
(3)设集合 ,N={xR|x-1|2},则 等于( ).
A. B.
C. D.
(4)若A、B均为非空集合,AB,U为全集,则下列集合中是空集的是( ).
A. B.
C. D.
(5)设全集U={1,2,3,4,5},集合 ={1,4},那么集合A的所有子集的个数( ).
A.3 B.6 C.7 D.8
(6)已知全集U={1,2,3,4,5},集合A、BU,若 , ={4}, ={1,5},则下列结论中正确的是( ).
A.3A,3B B. ,3B
C. ,3B D.3A,3B
(7)已知非空集合M和N,规定:M-N={x|xM,但 },那么M-(M-N)等于( ).
A. B. C.M D.N
二、填空题:
(8)设集合 ,B={1,2,3,4},则 =__________
(9)若集合 中有且仅有一个元素,则a的取值集合是___.
(10)已知集合A={a,0}, ,若 ,则a=________.
三、解答题:
(11)已知集合 , ,求 , .
(12)已知 ,B={x|x是正实数},若 ,求实数m的取值范围.
高一数学集合的练习题2
1.对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是()
A.{x|x是小于18的正奇数}
B.{x|x=4k+1,kZ,且k5}
C.{x|x=4t-3,tN,且t5}
D.{x|x=4s-3,sNx,且s5}
解析:选D.A中小于18的正奇数除给定集合中的元素外,还有3,7,11,15;B中k取负数,多了若干元素;C中t=0时多了-3这个元素,只有D是正确的.
2.集合P={x|x=2k,kZ},M={x|x=2k+1,kZ},S={x|x=4k+1,kZ},aP,bM,设c=a+b,则有()
A.cP B.cM
C.cS D.以上都不对
解析:选B.∵aP,bM,c=a+b,
设a=2k1,k1Z,b=2k2+1,k2Z,
c=2k1+2k2+1=2(k1+k2)+1,
又k1+k2Z,cM.
3.定义集合运算:AxB={z|z=xy,xA,yB},设A={1,2},B={0,2},则集合AxB的所有元素之和为()
A.0 B.2
C.3 D.6
解析:选D.∵z=xy,xA,yB,
z的取值有:10=0,12=2,20=0,22=4,
故AxB={0,2,4},
集合AxB的所有元素之和为:0+2+4=6.
4.已知集合A={1,2,3},B={1,2},C={(x,y)|xA,yB},则用列举法表示集合C=____________.
解析:∵C={(x,y)|xA,yB},
满足条件的点为:
(1,1),(1,2),(2,1),(2,2),(3,1),(3,2).
答案:{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)}
1.集合{(x,y)|y=2x-1}表示()
A.方程y=2x-1
B.点(x,y)
C.平面直角坐标系中的所有点组成的集合
D.函数y=2x-1图象上的所有点组成的集合
答案:D
2.设集合M={xR|x33},a=26,则()
A.aM B.aM
C.{a}M D.{a|a=26}M
解析:选B.(26)2-(33)2=24-270,
故2633.所以aM.
3.方程组x+y=1x-y=9的解集是()
A.(-5,4) B.(5,-4)
C.{(-5,4)} D.{(5,-4)}
解析:选D.由x+y=1x-y=9,得x=5y=-4,该方程组有一组解(5,-4),解集为{(5,-4)}.
4.下列命题正确的有()
(1)很小的实数可以构成集合;
(2)集合{y|y=x2-1}与集合{(x,y)|y=x2-1}是同一个集合;
(3)1,32,64,|-12|,0.5这些数组成的集合有5个元素;
(4)集合{(x,y)|xy0,x,yR}是指第二和第四象限内的点集.
A.0个 B.1个
C.2个 D.3个
解析:选A.(1)错的原因是元素不确定;(2)前者是数集,而后者是点集,种类不同;(3)32=64,|-12|=0.5,有重复的元素,应该是3个元素;(4)本集合还包括坐标轴.
5.下列集合中,不同于另外三个集合的是()
A.{0} B.{y|y2=0}
C.{x|x=0} D.{x=0}
解析:选D.A是列举法,C是描述法,对于B要注意集合的代表元素是y,故与A,C相同,而D表示该集合含有一个元素,即x=0.
6.设P={1,2,3,4},Q={4,5,6,7,8},定义PxQ={(a,b)|aP,bQ,ab},则PxQ中元素的个数为()
A.4 B.5
C.19 D.20
解析:选C.易得PxQ中元素的个数为45-1=19.故选C项.
7.由实数x,-x,x2,-3x3所组成的集合里面元素最多有________个.
解析:x2=|x|,而-3x3=-x,故集合里面元素最多有2个.
答案:2
8.已知集合A=xN|4x-3Z,试用列举法表示集合A=________.
解析:要使4x-3Z,必须x-3是4的约数.而4的约数有-4,-2,-1,1,2,4六个,则x=-1,1,2,4,5,7,要注意到元素x应为自然数,故A={1,2,4,5,7}
答案:{1,2,4,5,7}
9.集合{x|x2-2x+m=0}含有两个元素,则实数m满足的条件为________.
解析:该集合是关于x的一元二次方程的解集,则=4-4m0,所以m1.
答案:m1
10. 用适当的方法表示下列集合:
(1)所有被3整除的整数;
(2)图中阴影部分点(含边界)的坐标的集合(不含虚线);
(3)满足方程x=|x|,xZ的所有x的值构成的集合B.
解:(1){x|x=3n,n
(2){(x,y)|-12,-121,且xy
(3)B={x|x=|x|,xZ}.
11.已知集合A={xR|ax2+2x+1=0},其中aR.若1是集合A中的一个元素,请用列举法表示集合A.
解:∵1是集合A中的一个元素,
1是关于x的方程ax2+2x+1=0的一个根,
a12+21+1=0,即a=-3.
方程即为-3x2+2x+1=0,
解这个方程,得x1=1,x2=-13,
集合A=-13,1.
12.已知集合A={x|ax2-3x+2=0},若A中元素至多只有一个,求实数a的取值范围.
解:①a=0时,原方程为-3x+2=0,x=23,符合题意.
②a0时,方程ax2-3x+2=0为一元二次方程.
由=9-8a0,得a98.
当a98时,方程ax2-3x+2=0无实数根或有两个相等的实数根.
综合①②,知a=0或a98.
由小编墨染青衣颜整理的文章高一数学集合的练习题分享结束了,希望给你学习生活工作带来帮助。